Logo Search packages:      
Sourcecode: db2 version File versions  Download package

bt_split.c

/*-
 * See the file LICENSE for redistribution information.
 *
 * Copyright (c) 1996, 1997, 1998
 *    Sleepycat Software.  All rights reserved.
 */
/*
 * Copyright (c) 1990, 1993, 1994, 1995, 1996
 *    Keith Bostic.  All rights reserved.
 */
/*
 * Copyright (c) 1990, 1993, 1994, 1995
 *    The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    This product includes software developed by the University of
 *    California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "config.h"

#ifndef lint
static const char sccsid[] = "@(#)bt_split.c    10.33 (Sleepycat) 10/13/98";
#endif /* not lint */

#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>

#include <errno.h>
#include <limits.h>
#include <string.h>
#endif

#include "db_int.h"
#include "db_page.h"
#include "btree.h"

static int __bam_broot __P((DBC *, PAGE *, PAGE *, PAGE *));
static int __bam_page __P((DBC *, EPG *, EPG *));
static int __bam_pinsert __P((DBC *, EPG *, PAGE *, PAGE *));
static int __bam_psplit __P((DBC *, EPG *, PAGE *, PAGE *, db_indx_t *));
static int __bam_root __P((DBC *, EPG *));
static int __ram_root __P((DBC *, PAGE *, PAGE *, PAGE *));

/*
 * __bam_split --
 *    Split a page.
 *
 * PUBLIC: int __bam_split __P((DBC *, void *));
 */
int
__bam_split(dbc, arg)
      DBC *dbc;
      void *arg;
{
      BTREE *t;
      CURSOR *cp;
      DB *dbp;
      enum { UP, DOWN } dir;
      int exact, level, ret;

      dbp = dbc->dbp;
      cp = dbc->internal;

      /*
       * The locking protocol we use to avoid deadlock to acquire locks by
       * walking down the tree, but we do it as lazily as possible, locking
       * the root only as a last resort.  We expect all stack pages to have
       * been discarded before we're called; we discard all short-term locks.
       *
       * When __bam_split is first called, we know that a leaf page was too
       * full for an insert.  We don't know what leaf page it was, but we
       * have the key/recno that caused the problem.  We call XX_search to
       * reacquire the leaf page, but this time get both the leaf page and
       * its parent, locked.  We then split the leaf page and see if the new
       * internal key will fit into the parent page.  If it will, we're done.
       *
       * If it won't, we discard our current locks and repeat the process,
       * only this time acquiring the parent page and its parent, locked.
       * This process repeats until we succeed in the split, splitting the
       * root page as the final resort.  The entire process then repeats,
       * as necessary, until we split a leaf page.
       *
       * XXX
       * A traditional method of speeding this up is to maintain a stack of
       * the pages traversed in the original search.  You can detect if the
       * stack is correct by storing the page's LSN when it was searched and
       * comparing that LSN with the current one when it's locked during the
       * split.  This would be an easy change for this code, but I have no
       * numbers that indicate it's worthwhile.
       */
      t = dbp->internal;
      for (dir = UP, level = LEAFLEVEL;; dir == UP ? ++level : --level) {
            /*
             * Acquire a page and its parent, locked.
             */
            if ((ret = (dbp->type == DB_BTREE ?
                __bam_search(dbc, arg, S_WRPAIR, level, NULL, &exact) :
                __bam_rsearch(dbc,
                    (db_recno_t *)arg, S_WRPAIR, level, &exact))) != 0)
                  return (ret);

            /*
             * Split the page if it still needs it (it's possible another
             * thread of control has already split the page).  If we are
             * guaranteed that two items will fit on the page, the split
             * is no longer necessary.
             */
            if (t->bt_ovflsize * 2 <=
                (db_indx_t)P_FREESPACE(cp->csp[0].page)) {
                  __bam_stkrel(dbc, 1);
                  return (0);
            }
            ret = cp->csp[0].page->pgno == PGNO_ROOT ?
                __bam_root(dbc, &cp->csp[0]) :
                __bam_page(dbc, &cp->csp[-1], &cp->csp[0]);
            BT_STK_CLR(cp);

            switch (ret) {
            case 0:
                  /* Once we've split the leaf page, we're done. */
                  if (level == LEAFLEVEL)
                        return (0);

                  /* Switch directions. */
                  if (dir == UP)
                        dir = DOWN;
                  break;
            case DB_NEEDSPLIT:
                  /*
                   * It's possible to fail to split repeatedly, as other
                   * threads may be modifying the tree, or the page usage
                   * is sufficiently bad that we don't get enough space
                   * the first time.
                   */
                  if (dir == DOWN)
                        dir = UP;
                  break;
            default:
                  return (ret);
            }
      }
      /* NOTREACHED */
}

/*
 * __bam_root --
 *    Split the root page of a btree.
 */
static int
__bam_root(dbc, cp)
      DBC *dbc;
      EPG *cp;
{
      DB *dbp;
      PAGE *lp, *rp;
      db_indx_t split;
      int ret;

      dbp = dbc->dbp;

      /* Yeah, right. */
      if (cp->page->level >= MAXBTREELEVEL) {
            ret = ENOSPC;
            goto err;
      }

      /* Create new left and right pages for the split. */
      lp = rp = NULL;
      if ((ret = __bam_new(dbc, TYPE(cp->page), &lp)) != 0 ||
          (ret = __bam_new(dbc, TYPE(cp->page), &rp)) != 0)
            goto err;
      P_INIT(lp, dbp->pgsize, lp->pgno,
          PGNO_INVALID, ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
          cp->page->level, TYPE(cp->page));
      P_INIT(rp, dbp->pgsize, rp->pgno,
          ISINTERNAL(cp->page) ?  PGNO_INVALID : lp->pgno, PGNO_INVALID,
          cp->page->level, TYPE(cp->page));

      /* Split the page. */
      if ((ret = __bam_psplit(dbc, cp, lp, rp, &split)) != 0)
            goto err;

      /* Log the change. */
      if (DB_LOGGING(dbc)) {
            DBT __a;
            DB_LSN __lsn;
            memset(&__a, 0, sizeof(__a));
            __a.data = cp->page;
            __a.size = dbp->pgsize;
            ZERO_LSN(__lsn);
            if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbc->txn,
                &LSN(cp->page), 0, dbp->log_fileid, PGNO(lp), &LSN(lp),
                PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp), 0, &__lsn,
                &__a)) != 0)
                  goto err;
            LSN(lp) = LSN(rp) = LSN(cp->page);
      }

      /* Clean up the new root page. */
      if ((ret = (dbp->type == DB_RECNO ?
          __ram_root(dbc, cp->page, lp, rp) :
          __bam_broot(dbc, cp->page, lp, rp))) != 0)
            goto err;

      /* Adjust any cursors.  Do it last so we don't have to undo it. */
      __bam_ca_split(dbp, cp->page->pgno, lp->pgno, rp->pgno, split, 1);

      /* Success -- write the real pages back to the store. */
      (void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
      (void)__BT_TLPUT(dbc, cp->lock);
      (void)memp_fput(dbp->mpf, lp, DB_MPOOL_DIRTY);
      (void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);

      return (0);

err:  if (lp != NULL)
            (void)__bam_free(dbc, lp);
      if (rp != NULL)
            (void)__bam_free(dbc, rp);
      (void)memp_fput(dbp->mpf, cp->page, 0);
      (void)__BT_TLPUT(dbc, cp->lock);
      return (ret);
}

/*
 * __bam_page --
 *    Split the non-root page of a btree.
 */
static int
__bam_page(dbc, pp, cp)
      DBC *dbc;
      EPG *pp, *cp;
{
      DB *dbp;
      DB_LOCK tplock;
      PAGE *lp, *rp, *tp;
      db_indx_t split;
      int ret;

      dbp = dbc->dbp;
      lp = rp = tp = NULL;
      ret = -1;

      /* Create new right page for the split. */
      if ((ret = __bam_new(dbc, TYPE(cp->page), &rp)) != 0)
            goto err;
      P_INIT(rp, dbp->pgsize, rp->pgno,
          ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->pgno,
          ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->next_pgno,
          cp->page->level, TYPE(cp->page));

      /* Create new left page for the split. */
      if ((ret = __os_malloc(dbp->pgsize, NULL, &lp)) != 0)
            goto err;
      P_INIT(lp, dbp->pgsize, cp->page->pgno,
          ISINTERNAL(cp->page) ?  PGNO_INVALID : cp->page->prev_pgno,
          ISINTERNAL(cp->page) ?  PGNO_INVALID : rp->pgno,
          cp->page->level, TYPE(cp->page));
      ZERO_LSN(lp->lsn);

      /*
       * Split right.
       *
       * Only the indices are sorted on the page, i.e., the key/data pairs
       * aren't, so it's simpler to copy the data from the split page onto
       * two new pages instead of copying half the data to the right page
       * and compacting the left page in place.  Since the left page can't
       * change, we swap the original and the allocated left page after the
       * split.
       */
      if ((ret = __bam_psplit(dbc, cp, lp, rp, &split)) != 0)
            goto err;

      /*
       * Fix up the previous pointer of any leaf page following the split
       * page.
       *
       * !!!
       * There are interesting deadlock situations here as we write-lock a
       * page that's not in our direct ancestry.  Consider a cursor walking
       * through the leaf pages, that has the previous page read-locked and
       * is waiting on a lock for the page we just split.  It will deadlock
       * here.  If this is a problem, we can fail in the split; it's not a
       * problem as the split will succeed after the cursor passes through
       * the page we're splitting.
       */
      if (TYPE(cp->page) == P_LBTREE && rp->next_pgno != PGNO_INVALID) {
            if ((ret = __bam_lget(dbc,
                0, rp->next_pgno, DB_LOCK_WRITE, &tplock)) != 0)
                  goto err;
            if ((ret = memp_fget(dbp->mpf, &rp->next_pgno, 0, &tp)) != 0)
                  goto err;
      }

      /* Insert the new pages into the parent page. */
      if ((ret = __bam_pinsert(dbc, pp, lp, rp)) != 0)
            goto err;

      /* Log the change. */
      if (DB_LOGGING(dbc)) {
            DBT __a;
            DB_LSN __lsn;
            memset(&__a, 0, sizeof(__a));
            __a.data = cp->page;
            __a.size = dbp->pgsize;
            if (tp == NULL)
                  ZERO_LSN(__lsn);
            if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbc->txn,
                &cp->page->lsn, 0, dbp->log_fileid, PGNO(cp->page),
                &LSN(cp->page), PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp),
                tp == NULL ? 0 : PGNO(tp),
                tp == NULL ? &__lsn : &LSN(tp), &__a)) != 0)
                  goto err;

            LSN(lp) = LSN(rp) = LSN(cp->page);
            if (tp != NULL)
                  LSN(tp) = LSN(cp->page);
      }

      /* Copy the allocated page into place. */
      memcpy(cp->page, lp, LOFFSET(lp));
      memcpy((u_int8_t *)cp->page + HOFFSET(lp),
          (u_int8_t *)lp + HOFFSET(lp), dbp->pgsize - HOFFSET(lp));
      __os_free(lp, dbp->pgsize);
      lp = NULL;

      /* Finish the next-page link. */
      if (tp != NULL)
            tp->prev_pgno = rp->pgno;

      /* Adjust any cursors.  Do so last so we don't have to undo it. */
      __bam_ca_split(dbp, cp->page->pgno, cp->page->pgno, rp->pgno, split, 0);

      /* Success -- write the real pages back to the store. */
      (void)memp_fput(dbp->mpf, pp->page, DB_MPOOL_DIRTY);
      (void)__BT_TLPUT(dbc, pp->lock);
      (void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
      (void)__BT_TLPUT(dbc, cp->lock);
      (void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
      if (tp != NULL) {
            (void)memp_fput(dbp->mpf, tp, DB_MPOOL_DIRTY);
            (void)__BT_TLPUT(dbc, tplock);
      }
      return (0);

err:  if (lp != NULL)
            __os_free(lp, dbp->pgsize);
      if (rp != NULL)
            (void)__bam_free(dbc, rp);
      if (tp != NULL) {
            (void)memp_fput(dbp->mpf, tp, 0);
            if (ret == DB_NEEDSPLIT)
                  (void)__BT_LPUT(dbc, tplock);
            else
                  (void)__BT_TLPUT(dbc, tplock);
      }
      (void)memp_fput(dbp->mpf, pp->page, 0);
      if (ret == DB_NEEDSPLIT)
            (void)__BT_LPUT(dbc, pp->lock);
      else
            (void)__BT_TLPUT(dbc, pp->lock);
      (void)memp_fput(dbp->mpf, cp->page, 0);
      if (ret == DB_NEEDSPLIT)
            (void)__BT_LPUT(dbc, cp->lock);
      else
            (void)__BT_TLPUT(dbc, cp->lock);
      return (ret);
}

/*
 * __bam_broot --
 *    Fix up the btree root page after it has been split.
 */
static int
__bam_broot(dbc, rootp, lp, rp)
      DBC *dbc;
      PAGE *rootp, *lp, *rp;
{
      BINTERNAL bi, *child_bi;
      BKEYDATA *child_bk;
      DB *dbp;
      DBT hdr, data;
      int ret;

      dbp = dbc->dbp;

      /*
       * If the root page was a leaf page, change it into an internal page.
       * We copy the key we split on (but not the key's data, in the case of
       * a leaf page) to the new root page.
       */
      P_INIT(rootp, dbp->pgsize,
          PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IBTREE);

      memset(&data, 0, sizeof(data));
      memset(&hdr, 0, sizeof(hdr));

      /*
       * The btree comparison code guarantees that the left-most key on any
       * level of the tree is never used, so it doesn't need to be filled in.
       */
      memset(&bi, 0, sizeof(bi));
      bi.len = 0;
      B_TSET(bi.type, B_KEYDATA, 0);
      bi.pgno = lp->pgno;
      if (F_ISSET(dbp, DB_BT_RECNUM)) {
            bi.nrecs = __bam_total(lp);
            RE_NREC_SET(rootp, bi.nrecs);
      }
      hdr.data = &bi;
      hdr.size = SSZA(BINTERNAL, data);
      if ((ret =
          __db_pitem(dbc, rootp, 0, BINTERNAL_SIZE(0), &hdr, NULL)) != 0)
            return (ret);

      switch (TYPE(rp)) {
      case P_IBTREE:
            /* Copy the first key of the child page onto the root page. */
            child_bi = GET_BINTERNAL(rp, 0);

            bi.len = child_bi->len;
            B_TSET(bi.type, child_bi->type, 0);
            bi.pgno = rp->pgno;
            if (F_ISSET(dbp, DB_BT_RECNUM)) {
                  bi.nrecs = __bam_total(rp);
                  RE_NREC_ADJ(rootp, bi.nrecs);
            }
            hdr.data = &bi;
            hdr.size = SSZA(BINTERNAL, data);
            data.data = child_bi->data;
            data.size = child_bi->len;
            if ((ret = __db_pitem(dbc, rootp, 1,
                BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
                  return (ret);

            /* Increment the overflow ref count. */
            if (B_TYPE(child_bi->type) == B_OVERFLOW)
                  if ((ret = __db_ovref(dbc,
                      ((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
                        return (ret);
            break;
      case P_LBTREE:
            /* Copy the first key of the child page onto the root page. */
            child_bk = GET_BKEYDATA(rp, 0);
            switch (B_TYPE(child_bk->type)) {
            case B_KEYDATA:
                  bi.len = child_bk->len;
                  B_TSET(bi.type, child_bk->type, 0);
                  bi.pgno = rp->pgno;
                  if (F_ISSET(dbp, DB_BT_RECNUM)) {
                        bi.nrecs = __bam_total(rp);
                        RE_NREC_ADJ(rootp, bi.nrecs);
                  }
                  hdr.data = &bi;
                  hdr.size = SSZA(BINTERNAL, data);
                  data.data = child_bk->data;
                  data.size = child_bk->len;
                  if ((ret = __db_pitem(dbc, rootp, 1,
                      BINTERNAL_SIZE(child_bk->len), &hdr, &data)) != 0)
                        return (ret);
                  break;
            case B_DUPLICATE:
            case B_OVERFLOW:
                  bi.len = BOVERFLOW_SIZE;
                  B_TSET(bi.type, child_bk->type, 0);
                  bi.pgno = rp->pgno;
                  if (F_ISSET(dbp, DB_BT_RECNUM)) {
                        bi.nrecs = __bam_total(rp);
                        RE_NREC_ADJ(rootp, bi.nrecs);
                  }
                  hdr.data = &bi;
                  hdr.size = SSZA(BINTERNAL, data);
                  data.data = child_bk;
                  data.size = BOVERFLOW_SIZE;
                  if ((ret = __db_pitem(dbc, rootp, 1,
                      BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
                        return (ret);

                  /* Increment the overflow ref count. */
                  if (B_TYPE(child_bk->type) == B_OVERFLOW)
                        if ((ret = __db_ovref(dbc,
                            ((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
                              return (ret);
                  break;
            default:
                  return (__db_pgfmt(dbp, rp->pgno));
            }
            break;
      default:
            return (__db_pgfmt(dbp, rp->pgno));
      }
      return (0);
}

/*
 * __ram_root --
 *    Fix up the recno root page after it has been split.
 */
static int
__ram_root(dbc, rootp, lp, rp)
      DBC *dbc;
      PAGE *rootp, *lp, *rp;
{
      DB *dbp;
      DBT hdr;
      RINTERNAL ri;
      int ret;

      dbp = dbc->dbp;

      /* Initialize the page. */
      P_INIT(rootp, dbp->pgsize,
          PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IRECNO);

      /* Initialize the header. */
      memset(&hdr, 0, sizeof(hdr));
      hdr.data = &ri;
      hdr.size = RINTERNAL_SIZE;

      /* Insert the left and right keys, set the header information. */
      ri.pgno = lp->pgno;
      ri.nrecs = __bam_total(lp);
      if ((ret = __db_pitem(dbc, rootp, 0, RINTERNAL_SIZE, &hdr, NULL)) != 0)
            return (ret);
      RE_NREC_SET(rootp, ri.nrecs);
      ri.pgno = rp->pgno;
      ri.nrecs = __bam_total(rp);
      if ((ret = __db_pitem(dbc, rootp, 1, RINTERNAL_SIZE, &hdr, NULL)) != 0)
            return (ret);
      RE_NREC_ADJ(rootp, ri.nrecs);
      return (0);
}

/*
 * __bam_pinsert --
 *    Insert a new key into a parent page, completing the split.
 */
static int
__bam_pinsert(dbc, parent, lchild, rchild)
      DBC *dbc;
      EPG *parent;
      PAGE *lchild, *rchild;
{
      BINTERNAL bi, *child_bi;
      BKEYDATA *child_bk, *tmp_bk;
      BTREE *t;
      DB *dbp;
      DBT a, b, hdr, data;
      PAGE *ppage;
      RINTERNAL ri;
      db_indx_t off;
      db_recno_t nrecs;
      u_int32_t n, nbytes, nksize;
      int ret;

      dbp = dbc->dbp;
      t = dbp->internal;
      ppage = parent->page;

      /* If handling record numbers, count records split to the right page. */
      nrecs = dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM) ?
          __bam_total(rchild) : 0;

      /*
       * Now we insert the new page's first key into the parent page, which
       * completes the split.  The parent points to a PAGE and a page index
       * offset, where the new key goes ONE AFTER the index, because we split
       * to the right.
       *
       * XXX
       * Some btree algorithms replace the key for the old page as well as
       * the new page.  We don't, as there's no reason to believe that the
       * first key on the old page is any better than the key we have, and,
       * in the case of a key being placed at index 0 causing the split, the
       * key is unavailable.
       */
      off = parent->indx + O_INDX;

      /*
       * Calculate the space needed on the parent page.
       *
       * Prefix trees: space hack used when inserting into BINTERNAL pages.
       * Retain only what's needed to distinguish between the new entry and
       * the LAST entry on the page to its left.  If the keys compare equal,
       * retain the entire key.  We ignore overflow keys, and the entire key
       * must be retained for the next-to-leftmost key on the leftmost page
       * of each level, or the search will fail.  Applicable ONLY to internal
       * pages that have leaf pages as children.  Further reduction of the
       * key between pairs of internal pages loses too much information.
       */
      switch (TYPE(rchild)) {
      case P_IBTREE:
            child_bi = GET_BINTERNAL(rchild, 0);
            nbytes = BINTERNAL_PSIZE(child_bi->len);

            if (P_FREESPACE(ppage) < nbytes)
                  return (DB_NEEDSPLIT);

            /* Add a new record for the right page. */
            memset(&bi, 0, sizeof(bi));
            bi.len = child_bi->len;
            B_TSET(bi.type, child_bi->type, 0);
            bi.pgno = rchild->pgno;
            bi.nrecs = nrecs;
            memset(&hdr, 0, sizeof(hdr));
            hdr.data = &bi;
            hdr.size = SSZA(BINTERNAL, data);
            memset(&data, 0, sizeof(data));
            data.data = child_bi->data;
            data.size = child_bi->len;
            if ((ret = __db_pitem(dbc, ppage, off,
                BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
                  return (ret);

            /* Increment the overflow ref count. */
            if (B_TYPE(child_bi->type) == B_OVERFLOW)
                  if ((ret = __db_ovref(dbc,
                      ((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
                        return (ret);
            break;
      case P_LBTREE:
            child_bk = GET_BKEYDATA(rchild, 0);
            switch (B_TYPE(child_bk->type)) {
            case B_KEYDATA:
                  nbytes = BINTERNAL_PSIZE(child_bk->len);
                  nksize = child_bk->len;
                  if (t->bt_prefix == NULL)
                        goto noprefix;
                  if (ppage->prev_pgno == PGNO_INVALID && off <= 1)
                        goto noprefix;
                  tmp_bk = GET_BKEYDATA(lchild, NUM_ENT(lchild) - P_INDX);
                  if (B_TYPE(tmp_bk->type) != B_KEYDATA)
                        goto noprefix;
                  memset(&a, 0, sizeof(a));
                  a.size = tmp_bk->len;
                  a.data = tmp_bk->data;
                  memset(&b, 0, sizeof(b));
                  b.size = child_bk->len;
                  b.data = child_bk->data;
                  nksize = t->bt_prefix(&a, &b);
                  if ((n = BINTERNAL_PSIZE(nksize)) < nbytes)
                        nbytes = n;
                  else
noprefix:               nksize = child_bk->len;

                  if (P_FREESPACE(ppage) < nbytes)
                        return (DB_NEEDSPLIT);

                  memset(&bi, 0, sizeof(bi));
                  bi.len = nksize;
                  B_TSET(bi.type, child_bk->type, 0);
                  bi.pgno = rchild->pgno;
                  bi.nrecs = nrecs;
                  memset(&hdr, 0, sizeof(hdr));
                  hdr.data = &bi;
                  hdr.size = SSZA(BINTERNAL, data);
                  memset(&data, 0, sizeof(data));
                  data.data = child_bk->data;
                  data.size = nksize;
                  if ((ret = __db_pitem(dbc, ppage, off,
                      BINTERNAL_SIZE(nksize), &hdr, &data)) != 0)
                        return (ret);
                  break;
            case B_DUPLICATE:
            case B_OVERFLOW:
                  nbytes = BINTERNAL_PSIZE(BOVERFLOW_SIZE);

                  if (P_FREESPACE(ppage) < nbytes)
                        return (DB_NEEDSPLIT);

                  memset(&bi, 0, sizeof(bi));
                  bi.len = BOVERFLOW_SIZE;
                  B_TSET(bi.type, child_bk->type, 0);
                  bi.pgno = rchild->pgno;
                  bi.nrecs = nrecs;
                  memset(&hdr, 0, sizeof(hdr));
                  hdr.data = &bi;
                  hdr.size = SSZA(BINTERNAL, data);
                  memset(&data, 0, sizeof(data));
                  data.data = child_bk;
                  data.size = BOVERFLOW_SIZE;
                  if ((ret = __db_pitem(dbc, ppage, off,
                      BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
                        return (ret);

                  /* Increment the overflow ref count. */
                  if (B_TYPE(child_bk->type) == B_OVERFLOW)
                        if ((ret = __db_ovref(dbc,
                            ((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
                              return (ret);
                  break;
            default:
                  return (__db_pgfmt(dbp, rchild->pgno));
            }
            break;
      case P_IRECNO:
      case P_LRECNO:
            nbytes = RINTERNAL_PSIZE;

            if (P_FREESPACE(ppage) < nbytes)
                  return (DB_NEEDSPLIT);

            /* Add a new record for the right page. */
            memset(&hdr, 0, sizeof(hdr));
            hdr.data = &ri;
            hdr.size = RINTERNAL_SIZE;
            ri.pgno = rchild->pgno;
            ri.nrecs = nrecs;
            if ((ret = __db_pitem(dbc,
                ppage, off, RINTERNAL_SIZE, &hdr, NULL)) != 0)
                  return (ret);
            break;
      default:
            return (__db_pgfmt(dbp, rchild->pgno));
      }

      /* Adjust the parent page's left page record count. */
      if (dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM)) {
            /* Log the change. */
            if (DB_LOGGING(dbc) &&
                (ret = __bam_cadjust_log(dbp->dbenv->lg_info,
                dbc->txn, &LSN(ppage), 0, dbp->log_fileid,
                PGNO(ppage), &LSN(ppage), (u_int32_t)parent->indx,
                -(int32_t)nrecs, (int32_t)0)) != 0)
                  return (ret);

            /* Update the left page count. */
            if (dbp->type == DB_RECNO)
                  GET_RINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
            else
                  GET_BINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
      }

      return (0);
}

/*
 * __bam_psplit --
 *    Do the real work of splitting the page.
 */
static int
__bam_psplit(dbc, cp, lp, rp, splitret)
      DBC *dbc;
      EPG *cp;
      PAGE *lp, *rp;
      db_indx_t *splitret;
{
      DB *dbp;
      PAGE *pp;
      db_indx_t half, nbytes, off, splitp, top;
      int adjust, cnt, isbigkey, ret;

      dbp = dbc->dbp;
      pp = cp->page;
      adjust = TYPE(pp) == P_LBTREE ? P_INDX : O_INDX;

      /*
       * If we're splitting the first (last) page on a level because we're
       * inserting (appending) a key to it, it's likely that the data is
       * sorted.  Moving a single item to the new page is less work and can
       * push the fill factor higher than normal.  If we're wrong it's not
       * a big deal, we'll just do the split the right way next time.
       */
      off = 0;
      if (NEXT_PGNO(pp) == PGNO_INVALID &&
          ((ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page) - 1) ||
          (!ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page))))
            off = NUM_ENT(cp->page) - adjust;
      else if (PREV_PGNO(pp) == PGNO_INVALID && cp->indx == 0)
            off = adjust;

      if (off != 0)
            goto sort;

      /*
       * Split the data to the left and right pages.  Try not to split on
       * an overflow key.  (Overflow keys on internal pages will slow down
       * searches.)  Refuse to split in the middle of a set of duplicates.
       *
       * First, find the optimum place to split.
       *
       * It's possible to try and split past the last record on the page if
       * there's a very large record at the end of the page.  Make sure this
       * doesn't happen by bounding the check at the next-to-last entry on
       * the page.
       *
       * Note, we try and split half the data present on the page.  This is
       * because another process may have already split the page and left
       * it half empty.  We don't try and skip the split -- we don't know
       * how much space we're going to need on the page, and we may need up
       * to half the page for a big item, so there's no easy test to decide
       * if we need to split or not.  Besides, if two threads are inserting
       * data into the same place in the database, we're probably going to
       * need more space soon anyway.
       */
      top = NUM_ENT(pp) - adjust;
      half = (dbp->pgsize - HOFFSET(pp)) / 2;
      for (nbytes = 0, off = 0; off < top && nbytes < half; ++off)
            switch (TYPE(pp)) {
            case P_IBTREE:
                  if (B_TYPE(GET_BINTERNAL(pp, off)->type) == B_KEYDATA)
                        nbytes +=
                           BINTERNAL_SIZE(GET_BINTERNAL(pp, off)->len);
                  else
                        nbytes += BINTERNAL_SIZE(BOVERFLOW_SIZE);
                  break;
            case P_LBTREE:
                  if (B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)
                        nbytes +=
                            BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
                  else
                        nbytes += BOVERFLOW_SIZE;

                  ++off;
                  if (B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)
                        nbytes +=
                            BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
                  else
                        nbytes += BOVERFLOW_SIZE;
                  break;
            case P_IRECNO:
                  nbytes += RINTERNAL_SIZE;
                  break;
            case P_LRECNO:
                  nbytes += BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
                  break;
            default:
                  return (__db_pgfmt(dbp, pp->pgno));
            }
sort: splitp = off;

      /*
       * Splitp is either at or just past the optimum split point.  If
       * it's a big key, try and find something close by that's not.
       */
      if (TYPE(pp) == P_IBTREE)
            isbigkey = B_TYPE(GET_BINTERNAL(pp, off)->type) != B_KEYDATA;
      else if (TYPE(pp) == P_LBTREE)
            isbigkey = B_TYPE(GET_BKEYDATA(pp, off)->type) != B_KEYDATA;
      else
            isbigkey = 0;
      if (isbigkey)
            for (cnt = 1; cnt <= 3; ++cnt) {
                  off = splitp + cnt * adjust;
                  if (off < (db_indx_t)NUM_ENT(pp) &&
                      ((TYPE(pp) == P_IBTREE &&
                      B_TYPE(GET_BINTERNAL(pp,off)->type) == B_KEYDATA) ||
                      B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)) {
                        splitp = off;
                        break;
                  }
                  if (splitp <= (db_indx_t)(cnt * adjust))
                        continue;
                  off = splitp - cnt * adjust;
                  if (TYPE(pp) == P_IBTREE ?
                      B_TYPE(GET_BINTERNAL(pp, off)->type) == B_KEYDATA :
                      B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA) {
                        splitp = off;
                        break;
                  }
            }

      /*
       * We can't split in the middle a set of duplicates.  We know that
       * no duplicate set can take up more than about 25% of the page,
       * because that's the point where we push it off onto a duplicate
       * page set.  So, this loop can't be unbounded.
       */
      if (F_ISSET(dbp, DB_AM_DUP) && TYPE(pp) == P_LBTREE &&
          pp->inp[splitp] == pp->inp[splitp - adjust])
            for (cnt = 1;; ++cnt) {
                  off = splitp + cnt * adjust;
                  if (off < NUM_ENT(pp) &&
                      pp->inp[splitp] != pp->inp[off]) {
                        splitp = off;
                        break;
                  }
                  if (splitp <= (db_indx_t)(cnt * adjust))
                        continue;
                  off = splitp - cnt * adjust;
                  if (pp->inp[splitp] != pp->inp[off]) {
                        splitp = off + adjust;
                        break;
                  }
            }


      /* We're going to split at splitp. */
      if ((ret = __bam_copy(dbp, pp, lp, 0, splitp)) != 0)
            return (ret);
      if ((ret = __bam_copy(dbp, pp, rp, splitp, NUM_ENT(pp))) != 0)
            return (ret);

      *splitret = splitp;
      return (0);
}

/*
 * __bam_copy --
 *    Copy a set of records from one page to another.
 *
 * PUBLIC: int __bam_copy __P((DB *, PAGE *, PAGE *, u_int32_t, u_int32_t));
 */
int
__bam_copy(dbp, pp, cp, nxt, stop)
      DB *dbp;
      PAGE *pp, *cp;
      u_int32_t nxt, stop;
{
      db_indx_t nbytes, off;

      /*
       * Copy the rest of the data to the right page.  Nxt is the next
       * offset placed on the target page.
       */
      for (off = 0; nxt < stop; ++nxt, ++NUM_ENT(cp), ++off) {
            switch (TYPE(pp)) {
            case P_IBTREE:
                  if (B_TYPE(GET_BINTERNAL(pp, nxt)->type) == B_KEYDATA)
                        nbytes =
                            BINTERNAL_SIZE(GET_BINTERNAL(pp, nxt)->len);
                  else
                        nbytes = BINTERNAL_SIZE(BOVERFLOW_SIZE);
                  break;
            case P_LBTREE:
                  /*
                   * If we're on a key and it's a duplicate, just copy
                   * the offset.
                   */
                  if (off != 0 && (nxt % P_INDX) == 0 &&
                      pp->inp[nxt] == pp->inp[nxt - P_INDX]) {
                        cp->inp[off] = cp->inp[off - P_INDX];
                        continue;
                  }
                  /* FALLTHROUGH */
            case P_LRECNO:
                  if (B_TYPE(GET_BKEYDATA(pp, nxt)->type) == B_KEYDATA)
                        nbytes =
                            BKEYDATA_SIZE(GET_BKEYDATA(pp, nxt)->len);
                  else
                        nbytes = BOVERFLOW_SIZE;
                  break;
            case P_IRECNO:
                  nbytes = RINTERNAL_SIZE;
                  break;
            default:
                  return (__db_pgfmt(dbp, pp->pgno));
            }
            cp->inp[off] = HOFFSET(cp) -= nbytes;
            memcpy(P_ENTRY(cp, off), P_ENTRY(pp, nxt), nbytes);
      }
      return (0);
}

Generated by  Doxygen 1.6.0   Back to index